1,634 research outputs found

    Structural and dynamical heterogeneities in two-dimensional melting

    Full text link
    Using molecular dynamics simulation, we study structural and dynamical heterogeneities at melting in two-dimensional one-component systems with 36000 particles. Between crystal and liquid we find intermediate hexatic states, where the density fluctuations are enhanced at small wave number k as well as those of the six-fold orientational order parameter. Their structure factors both grow up to the smallest wave number equal to the inverse system length. The intermediate scattering function of the density S(k,t) is found to relax exponentially with decay rate Gamma_k ~ k^z with z~2.6 at small k in the hexatic phase.Comment: 6 pages, 8 figure

    Dynamics of Binary Mixtures with Ions: Dynamic Structure Factor and Mesophase Formation

    Get PDF
    Dynamic equations are presented for polar binary mixtures containing ions in the presence of the preferential solvation. In one-phase states, we calculate the dynamic structure factor of the composition accounting for the ion motions. Microphase separation can take place for sufficiently large solvation asymmetry of the cations and the anions. We show two-dimensional simulation results of the mesophase formation with an antagonistic salt, where the cations are hydrophilic and the anions are hydrophobic. The structure factor S(q) in the resultant mesophase has a sharp peak at an intermediate wave number on the order of the Debye-Huckel wave number. As the quench depth is increased, the surface tension nearly vanishes in mesophases due to an electric double layer.Comment: 24 pages, 10 figures, to appear in Journal of Physics: Condensed Matte

    Defect structures in nematic liquid crystals around charged particles

    Full text link
    We numerically study the orientation deformations in nematic liquid crystals around charged particles. We set up a Ginzburg-Landau theory with inhomogeneous electric field. If the dielectric anisotropy varepsilon_1 is positive, Saturn ring defects are formed around the particles. For varepsilon_1<0, novel "ansa" defects appear, which are disclination lines with their ends on the particle surface. We find unique defect structures around two charged particles. To lower the free energy, oppositely charged particle pairs tend to be aligned in the parallel direction for varepsilon_1>0 and in the perpendicular plane for varepsilon_1<0 with respect to the background director . For identically charged pairs the preferred directions for varepsilon_1>0 and varepsilon_1<0 are exchanged. We also examie competition between the charge-induced anchoring and the short-range anchoring. If the short-range anchoring is sufficiently strong, it can be effective in the vicinity of the surface, while the director orientation is governed by the long-range electrostatic interaction far from the surface.Comment: 10 papes, 12 figures, to appear in European Physical Journal

    Shear flow effects on phase separation of entangled polymer blends

    Get PDF
    We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an approach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and plateau moduli of the two components

    Viscoelastic Effect on Hydrodynamic Relaxation in Polymer Solutions

    Full text link
    The viscoelastic effect on the hydrodynamic relaxation in semidilute polymer solutions is investigated. From the linearized two-fluid model equations, we predict that the dynamical asymmetry coupling between the velocity fluctuations and the viscoelastic stress influences on the hydrodynamic relaxation process, resulting in a wave-number-dependent shear viscosity.Comment: 7pages; To be published in Journal of the Physical Society of Japan,Vol 72,No2,(2003

    Hydrodynamic fluctuations and the minimum shear viscosity of the dilute Fermi gas at unitarity

    Full text link
    We study hydrodynamic fluctuations in a non-relativistic fluid. We show that in three dimensions fluctuations lead to a minimum in the shear viscosity to entropy density ratio η/s\eta/s as a function of the temperature. The minimum provides a bound on η/s\eta/s which is independent of the conjectured bound in string theory, η/s≄ℏ/(4πkB)\eta/s \geq \hbar/(4\pi k_B), where ss is the entropy density. For the dilute Fermi gas at unitarity we find \eta/s\gsim 0.2\hbar. This bound is not universal -- it depends on thermodynamic properties of the unitary Fermi gas, and on empirical information about the range of validity of hydrodynamics. We also find that the viscous relaxation time of a hydrodynamic mode with frequency ω\omega diverges as 1/ω1/\sqrt{\omega}, and that the shear viscosity in two dimensions diverges as log⁥(1/ω)\log(1/ \omega).Comment: 26 pages, 5 figures; final version to appear in Phys Rev

    Ordered magnetic and quadrupolar states under hydrostatic pressure in orthorhombic PrCu2

    Get PDF
    We report magnetic susceptibility and electrical resistivity measurements on single-crystalline PrCu2 under hydrostatic pressure, up to 2 GPa, which pressure range covers the pressure-induced Van Vleck paramagnet-to-antiferromagnet transition at 1.2 GPa. The measured anisotropy in the susceptibility shows that in the pressure-induced magnetic state the ordered 4f-moments lie in the ac-plane. We propose that remarkable pressure effects on the susceptibility and resistivity are due to changes in the quadrupolar state of O22 and/or O20 under pressure. We present a simple analysis in terms of the singlet-singlet model.Comment: 14 pages, 9 figures submitted to Phys. Rev.

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja
    • 

    corecore